Metamath Proof Explorer


Theorem sylan

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan.1 φψ
sylan.2 ψχθ
Assertion sylan φχθ

Proof

Step Hyp Ref Expression
1 sylan.1 φψ
2 sylan.2 ψχθ
3 2 expcom χψθ
4 1 3 mpan9 φχθ