Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof
shortened by Wolf Lammen, 22-Nov-2012)
|
|
Ref |
Expression |
|
Hypotheses |
sylan.1 |
|
|
|
sylan.2 |
|
|
Assertion |
sylan |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylan.1 |
|
| 2 |
|
sylan.2 |
|
| 3 |
2
|
expcom |
|
| 4 |
1 3
|
mpan9 |
|