Metamath Proof Explorer


Theorem sylancbr

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancbr.1 ψφ
sylancbr.2 χφ
sylancbr.3 ψχθ
Assertion sylancbr φθ

Proof

Step Hyp Ref Expression
1 sylancbr.1 ψφ
2 sylancbr.2 χφ
3 sylancbr.3 ψχθ
4 1 2 3 syl2anbr φφθ
5 4 anidms φθ