Metamath Proof Explorer


Theorem sylibd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibd.1 φψχ
sylibd.2 φχθ
Assertion sylibd φψθ

Proof

Step Hyp Ref Expression
1 sylibd.1 φψχ
2 sylibd.2 φχθ
3 2 biimpd φχθ
4 1 3 syld φψθ