Metamath Proof Explorer


Theorem symdifeq1

Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifeq1 A=BAC=BC

Proof

Step Hyp Ref Expression
1 difeq1 A=BAC=BC
2 difeq2 A=BCA=CB
3 1 2 uneq12d A=BACCA=BCCB
4 df-symdif AC=ACCA
5 df-symdif BC=BCCB
6 3 4 5 3eqtr4g A=BAC=BC