Metamath Proof Explorer


Theorem t1sep

Description: Any two distinct points in a T_1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion t1sep JFreAXBXABoJAo¬Bo

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 simpr3 JFreAXBXABAB
3 1 t1sep2 JFreAXBXoJAoBoA=B
4 3 3adant3r3 JFreAXBXABoJAoBoA=B
5 4 necon3ad JFreAXBXABAB¬oJAoBo
6 2 5 mpd JFreAXBXAB¬oJAoBo
7 rexanali oJAo¬Bo¬oJAoBo
8 6 7 sylibr JFreAXBXABoJAo¬Bo