Metamath Proof Explorer


Theorem tanhval-named

Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion tanhval-named A cosh -1 0 tanh A = tan i A i

Proof

Step Hyp Ref Expression
1 oveq2 x = A i x = i A
2 1 fveq2d x = A tan i x = tan i A
3 2 oveq1d x = A tan i x i = tan i A i
4 df-tanh tanh = x cosh -1 0 tan i x i
5 ovex tan i A i V
6 3 4 5 fvmpt A cosh -1 0 tanh A = tan i A i