Metamath Proof Explorer


Theorem tcidm

Description: The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcidm TCTCA=TCA

Proof

Step Hyp Ref Expression
1 ssid TCATCA
2 tctr TrTCA
3 fvex TCAV
4 tcmin TCAVTCATCATrTCATCTCATCA
5 3 4 ax-mp TCATCATrTCATCTCATCA
6 1 2 5 mp2an TCTCATCA
7 tcid TCAVTCATCTCA
8 3 7 ax-mp TCATCTCA
9 6 8 eqssi TCTCA=TCA