Metamath Proof Explorer


Theorem tcphphl

Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypothesis tcphval.n G=toCPreHilW
Assertion tcphphl WPreHilGPreHil

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 eqidd BaseW=BaseW
3 eqid BaseW=BaseW
4 1 3 tcphbas BaseW=BaseG
5 4 a1i BaseW=BaseG
6 eqid +W=+W
7 1 6 tchplusg +W=+G
8 7 a1i +W=+G
9 8 oveqdr xBaseWyBaseWx+Wy=x+Gy
10 eqidd ScalarW=ScalarW
11 eqid ScalarW=ScalarW
12 1 11 tcphsca ScalarW=ScalarG
13 12 a1i ScalarW=ScalarG
14 eqid BaseScalarW=BaseScalarW
15 eqid W=W
16 1 15 tcphvsca W=G
17 16 a1i W=G
18 17 oveqdr xBaseScalarWyBaseWxWy=xGy
19 eqid 𝑖W=𝑖W
20 1 19 tcphip 𝑖W=𝑖G
21 20 a1i 𝑖W=𝑖G
22 21 oveqdr xBaseWyBaseWx𝑖Wy=x𝑖Gy
23 2 5 9 10 13 14 18 22 phlpropd WPreHilGPreHil
24 23 mptru WPreHilGPreHil