Metamath Proof Explorer


Theorem tcphtopn

Description: The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphtopn.d D=distG
tcphtopn.j J=TopOpenG
Assertion tcphtopn WVJ=MetOpenD

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphtopn.d D=distG
3 tcphtopn.j J=TopOpenG
4 eqid BaseW=BaseW
5 4 tcphex xBaseWx𝑖WxV
6 eqid 𝑖W=𝑖W
7 1 4 6 tcphval G=WtoNrmGrpxBaseWx𝑖Wx
8 eqid MetOpenD=MetOpenD
9 7 2 8 tngtopn WVxBaseWx𝑖WxVMetOpenD=TopOpenG
10 5 9 mpan2 WVMetOpenD=TopOpenG
11 3 10 eqtr4id WVJ=MetOpenD