Metamath Proof Explorer


Theorem telfsum

Description: Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsum.1 k=jA=B
telfsum.2 k=j+1A=C
telfsum.3 k=MA=D
telfsum.4 k=N+1A=E
telfsum.5 φN
telfsum.6 φN+1M
telfsum.7 φkMN+1A
Assertion telfsum φj=MNBC=DE

Proof

Step Hyp Ref Expression
1 telfsum.1 k=jA=B
2 telfsum.2 k=j+1A=C
3 telfsum.3 k=MA=D
4 telfsum.4 k=N+1A=E
5 telfsum.5 φN
6 telfsum.6 φN+1M
7 telfsum.7 φkMN+1A
8 fzval3 NMN=M..^N+1
9 5 8 syl φMN=M..^N+1
10 9 sumeq1d φj=MNBC=jM..^N+1BC
11 1 2 3 4 6 7 telfsumo φjM..^N+1BC=DE
12 10 11 eqtrd φj=MNBC=DE