Metamath Proof Explorer


Theorem termcterm

Description: A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses termcterm.e E = CatCat U
termcterm.u φ U V
termcterm.c φ C U
termcterm.t No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
Assertion termcterm φ C TermO E

Proof

Step Hyp Ref Expression
1 termcterm.e E = CatCat U
2 termcterm.u φ U V
3 termcterm.c φ C U
4 termcterm.t Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
5 simpr φ d Base E d Base E
6 eqid Base E = Base E
7 1 6 2 catcbas φ Base E = U Cat
8 7 adantr φ d Base E Base E = U Cat
9 5 8 eleqtrd φ d Base E d U Cat
10 9 elin2d φ d Base E d Cat
11 4 adantr Could not format ( ( ph /\ d e. ( Base ` E ) ) -> C e. TermCat ) : No typesetting found for |- ( ( ph /\ d e. ( Base ` E ) ) -> C e. TermCat ) with typecode |-
12 10 11 functermceu φ d Base E ∃! f f d Func C
13 2 adantr φ d Base E U V
14 eqid Hom E = Hom E
15 4 termccd φ C Cat
16 3 15 elind φ C U Cat
17 16 7 eleqtrrd φ C Base E
18 17 adantr φ d Base E C Base E
19 1 6 13 14 5 18 catchom φ d Base E d Hom E C = d Func C
20 19 eleq2d φ d Base E f d Hom E C f d Func C
21 20 eubidv φ d Base E ∃! f f d Hom E C ∃! f f d Func C
22 12 21 mpbird φ d Base E ∃! f f d Hom E C
23 22 ralrimiva φ d Base E ∃! f f d Hom E C
24 1 catccat U V E Cat
25 2 24 syl φ E Cat
26 6 14 25 17 istermo φ C TermO E d Base E ∃! f f d Hom E C
27 23 26 mpbird φ C TermO E