Metamath Proof Explorer


Theorem termoeu1w

Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of Adamek p. 103. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses termoeu1.c φCCat
termoeu1.a φATermOC
termoeu1.b φBTermOC
Assertion termoeu1w φA𝑐CB

Proof

Step Hyp Ref Expression
1 termoeu1.c φCCat
2 termoeu1.a φATermOC
3 termoeu1.b φBTermOC
4 1 2 3 termoeu1 φ∃!ffAIsoCB
5 euex ∃!ffAIsoCBffAIsoCB
6 4 5 syl φffAIsoCB
7 eqid IsoC=IsoC
8 eqid BaseC=BaseC
9 termoo CCatATermOCABaseC
10 1 2 9 sylc φABaseC
11 termoo CCatBTermOCBBaseC
12 1 3 11 sylc φBBaseC
13 7 8 1 10 12 cic φA𝑐CBffAIsoCB
14 6 13 mpbird φA𝑐CB