Metamath Proof Explorer


Theorem termoeu1w

Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of Adamek p. 103. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses termoeu1.c φ C Cat
termoeu1.a φ A TermO C
termoeu1.b φ B TermO C
Assertion termoeu1w φ A 𝑐 C B

Proof

Step Hyp Ref Expression
1 termoeu1.c φ C Cat
2 termoeu1.a φ A TermO C
3 termoeu1.b φ B TermO C
4 1 2 3 termoeu1 φ ∃! f f A Iso C B
5 euex ∃! f f A Iso C B f f A Iso C B
6 4 5 syl φ f f A Iso C B
7 eqid Iso C = Iso C
8 eqid Base C = Base C
9 termoo C Cat A TermO C A Base C
10 1 2 9 sylc φ A Base C
11 termoo C Cat B TermO C B Base C
12 1 3 11 sylc φ B Base C
13 7 8 1 10 12 cic φ A 𝑐 C B f f A Iso C B
14 6 13 mpbird φ A 𝑐 C B