Metamath Proof Explorer


Theorem tfindes

Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of Suppes p. 197. (Contributed by NM, 5-Mar-2004)

Ref Expression
Hypotheses tfindes.1 [˙/x]˙φ
tfindes.2 xOnφ[˙sucx/x]˙φ
tfindes.3 Limyxyφ[˙y/x]˙φ
Assertion tfindes xOnφ

Proof

Step Hyp Ref Expression
1 tfindes.1 [˙/x]˙φ
2 tfindes.2 xOnφ[˙sucx/x]˙φ
3 tfindes.3 Limyxyφ[˙y/x]˙φ
4 dfsbcq y=[˙y/x]˙φ[˙/x]˙φ
5 dfsbcq y=z[˙y/x]˙φ[˙z/x]˙φ
6 dfsbcq y=sucz[˙y/x]˙φ[˙sucz/x]˙φ
7 sbceq2a y=x[˙y/x]˙φφ
8 nfv xzOn
9 nfsbc1v x[˙z/x]˙φ
10 nfsbc1v x[˙sucz/x]˙φ
11 9 10 nfim x[˙z/x]˙φ[˙sucz/x]˙φ
12 8 11 nfim xzOn[˙z/x]˙φ[˙sucz/x]˙φ
13 eleq1w x=zxOnzOn
14 sbceq1a x=zφ[˙z/x]˙φ
15 suceq x=zsucx=sucz
16 15 sbceq1d x=z[˙sucx/x]˙φ[˙sucz/x]˙φ
17 14 16 imbi12d x=zφ[˙sucx/x]˙φ[˙z/x]˙φ[˙sucz/x]˙φ
18 13 17 imbi12d x=zxOnφ[˙sucx/x]˙φzOn[˙z/x]˙φ[˙sucz/x]˙φ
19 12 18 2 chvarfv zOn[˙z/x]˙φ[˙sucz/x]˙φ
20 cbvralsvw xyφzyzxφ
21 sbsbc zxφ[˙z/x]˙φ
22 21 ralbii zyzxφzy[˙z/x]˙φ
23 20 22 bitri xyφzy[˙z/x]˙φ
24 23 3 biimtrrid Limyzy[˙z/x]˙φ[˙y/x]˙φ
25 4 5 6 7 1 19 24 tfinds xOnφ