Metamath Proof Explorer


Theorem tfinds2

Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of Suppes p. 197. The wff ta is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004)

Ref Expression
Hypotheses tfinds2.1 x=φψ
tfinds2.2 x=yφχ
tfinds2.3 x=sucyφθ
tfinds2.4 τψ
tfinds2.5 yOnτχθ
tfinds2.6 Limxτyxχφ
Assertion tfinds2 xOnτφ

Proof

Step Hyp Ref Expression
1 tfinds2.1 x=φψ
2 tfinds2.2 x=yφχ
3 tfinds2.3 x=sucyφθ
4 tfinds2.4 τψ
5 tfinds2.5 yOnτχθ
6 tfinds2.6 Limxτyxχφ
7 0ex V
8 1 imbi2d x=τφτψ
9 7 8 sbcie [˙/x]˙τφτψ
10 4 9 mpbir [˙/x]˙τφ
11 5 a2d yOnτχτθ
12 11 sbcth xV[˙x/y]˙yOnτχτθ
13 12 elv [˙x/y]˙yOnτχτθ
14 sbcimg xV[˙x/y]˙yOnτχτθ[˙x/y]˙yOn[˙x/y]˙τχτθ
15 14 elv [˙x/y]˙yOnτχτθ[˙x/y]˙yOn[˙x/y]˙τχτθ
16 13 15 mpbi [˙x/y]˙yOn[˙x/y]˙τχτθ
17 sbcel1v [˙x/y]˙yOnxOn
18 sbcimg xV[˙x/y]˙τχτθ[˙x/y]˙τχ[˙x/y]˙τθ
19 18 elv [˙x/y]˙τχτθ[˙x/y]˙τχ[˙x/y]˙τθ
20 16 17 19 3imtr3i xOn[˙x/y]˙τχ[˙x/y]˙τθ
21 vex xV
22 2 bicomd x=yχφ
23 22 equcoms y=xχφ
24 23 imbi2d y=xτχτφ
25 21 24 sbcie [˙x/y]˙τχτφ
26 vex yV
27 26 sucex sucyV
28 3 imbi2d x=sucyτφτθ
29 27 28 sbcie [˙sucy/x]˙τφτθ
30 29 sbcbii [˙x/y]˙[˙sucy/x]˙τφ[˙x/y]˙τθ
31 suceq x=ysucx=sucy
32 31 sbcco2 [˙x/y]˙[˙sucy/x]˙τφ[˙sucx/x]˙τφ
33 30 32 bitr3i [˙x/y]˙τθ[˙sucx/x]˙τφ
34 20 25 33 3imtr3g xOnτφ[˙sucx/x]˙τφ
35 2 imbi2d x=yτφτχ
36 35 sbralie xyτφyxyxτχ
37 sbsbc yxyxτχ[˙y/x]˙yxτχ
38 36 37 bitr2i [˙y/x]˙yxτχxyτφ
39 r19.21v yxτχτyxχ
40 6 a2d Limxτyxχτφ
41 39 40 biimtrid Limxyxτχτφ
42 41 sbcth yV[˙y/x]˙Limxyxτχτφ
43 42 elv [˙y/x]˙Limxyxτχτφ
44 sbcimg yV[˙y/x]˙Limxyxτχτφ[˙y/x]˙Limx[˙y/x]˙yxτχτφ
45 44 elv [˙y/x]˙Limxyxτχτφ[˙y/x]˙Limx[˙y/x]˙yxτχτφ
46 43 45 mpbi [˙y/x]˙Limx[˙y/x]˙yxτχτφ
47 limeq x=yLimxLimy
48 26 47 sbcie [˙y/x]˙LimxLimy
49 sbcimg yV[˙y/x]˙yxτχτφ[˙y/x]˙yxτχ[˙y/x]˙τφ
50 49 elv [˙y/x]˙yxτχτφ[˙y/x]˙yxτχ[˙y/x]˙τφ
51 46 48 50 3imtr3i Limy[˙y/x]˙yxτχ[˙y/x]˙τφ
52 38 51 biimtrrid Limyxyτφ[˙y/x]˙τφ
53 10 34 52 tfindes xOnτφ