Metamath Proof Explorer


Theorem tfindsd

Description: Deduction associated with tfinds . (Contributed by Rohan Ridenour, 8-Aug-2023)

Ref Expression
Hypotheses tfindsd.1 x = ψ χ
tfindsd.2 x = y ψ θ
tfindsd.3 x = suc y ψ τ
tfindsd.4 x = A ψ η
tfindsd.5 φ χ
tfindsd.6 φ y On θ τ
tfindsd.7 φ Lim x y x θ ψ
tfindsd.8 φ A On
Assertion tfindsd φ η

Proof

Step Hyp Ref Expression
1 tfindsd.1 x = ψ χ
2 tfindsd.2 x = y ψ θ
3 tfindsd.3 x = suc y ψ τ
4 tfindsd.4 x = A ψ η
5 tfindsd.5 φ χ
6 tfindsd.6 φ y On θ τ
7 tfindsd.7 φ Lim x y x θ ψ
8 tfindsd.8 φ A On
9 6 3exp φ y On θ τ
10 9 com12 y On φ θ τ
11 7 3exp φ Lim x y x θ ψ
12 11 com12 Lim x φ y x θ ψ
13 1 2 3 4 5 10 12 tfinds3 A On φ η
14 8 13 mpcom φ η