Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgbtwnconn1.p | ||
| tgbtwnconn1.i | |||
| tgbtwnconn1.g | |||
| tgbtwnconn1.a | |||
| tgbtwnconn1.b | |||
| tgbtwnconn1.c | |||
| tgbtwnconn1.d | |||
| tgbtwnconn1.1 | |||
| tgbtwnconn1.2 | |||
| tgbtwnconn1.3 | |||
| tgbtwnconn1.m | |||
| tgbtwnconn1.e | |||
| tgbtwnconn1.f | |||
| tgbtwnconn1.h | |||
| tgbtwnconn1.j | |||
| tgbtwnconn1.4 | |||
| tgbtwnconn1.5 | |||
| tgbtwnconn1.6 | |||
| tgbtwnconn1.7 | |||
| tgbtwnconn1.8 | |||
| tgbtwnconn1.9 | |||
| tgbtwnconn1.10 | |||
| tgbtwnconn1.11 | |||
| Assertion | tgbtwnconn1lem1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgbtwnconn1.p | ||
| 2 | tgbtwnconn1.i | ||
| 3 | tgbtwnconn1.g | ||
| 4 | tgbtwnconn1.a | ||
| 5 | tgbtwnconn1.b | ||
| 6 | tgbtwnconn1.c | ||
| 7 | tgbtwnconn1.d | ||
| 8 | tgbtwnconn1.1 | ||
| 9 | tgbtwnconn1.2 | ||
| 10 | tgbtwnconn1.3 | ||
| 11 | tgbtwnconn1.m | ||
| 12 | tgbtwnconn1.e | ||
| 13 | tgbtwnconn1.f | ||
| 14 | tgbtwnconn1.h | ||
| 15 | tgbtwnconn1.j | ||
| 16 | tgbtwnconn1.4 | ||
| 17 | tgbtwnconn1.5 | ||
| 18 | tgbtwnconn1.6 | ||
| 19 | tgbtwnconn1.7 | ||
| 20 | tgbtwnconn1.8 | ||
| 21 | tgbtwnconn1.9 | ||
| 22 | tgbtwnconn1.10 | ||
| 23 | tgbtwnconn1.11 | ||
| 24 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch | |
| 25 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch | |
| 26 | 1 11 2 3 4 5 6 13 9 17 | tgbtwnexch | |
| 27 | 1 11 2 3 4 5 13 15 26 19 | tgbtwnexch | |
| 28 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch3 | |
| 29 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch | |
| 30 | 1 11 2 3 4 5 6 15 9 29 | tgbtwnexch3 | |
| 31 | 1 11 2 3 5 6 15 30 | tgbtwncom | |
| 32 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch3 | |
| 33 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch3 | |
| 34 | 1 11 2 3 6 13 15 33 | tgbtwncom | |
| 35 | 1 11 2 3 15 13 | axtgcgrrflx | |
| 36 | 35 23 | eqtr2d | |
| 37 | 20 21 | eqtr4d | |
| 38 | 1 11 2 3 12 7 6 13 37 | tgcgrcomlr | |
| 39 | 1 11 2 3 5 7 12 15 13 6 32 34 36 38 | tgcgrextend | |
| 40 | 1 11 2 3 12 14 5 6 22 | tgcgrcomr | |
| 41 | 1 11 2 3 5 12 14 15 6 5 28 31 39 40 | tgcgrextend | |
| 42 | 1 11 2 3 5 15 | axtgcgrrflx | |
| 43 | 1 11 2 3 5 15 5 4 14 15 8 25 27 41 42 | tgsegconeq |