Database ELEMENTARY GEOMETRY Tarskian Geometry Congruence tgbtwnexch  
				
		 
		
			
		 
		Description:   Outer transitivity law for betweenness.  Right-hand side of Theorem
         3.6 of Schwabhauser  p. 30.  (Contributed by Thierry Arnoux , 23-Mar-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						tkgeom.p   ⊢   P  =  Base  G      
					 
					
						tkgeom.d   ⊢   -  ˙ =   dist  ⁡  G        
					 
					
						tkgeom.i   ⊢   I  =    Itv   ⁡  G        
					 
					
						tkgeom.g    ⊢   φ   →   G  ∈  𝒢  Tarski        
					 
					
						tgbtwnintr.1    ⊢   φ   →   A  ∈  P         
					 
					
						tgbtwnintr.2    ⊢   φ   →   B  ∈  P         
					 
					
						tgbtwnintr.3    ⊢   φ   →   C  ∈  P         
					 
					
						tgbtwnintr.4    ⊢   φ   →   D  ∈  P         
					 
					
						tgbtwnexch.1    ⊢   φ   →   B  ∈  A  I  C        
					 
					
						tgbtwnexch.2    ⊢   φ   →   C  ∈  A  I  D        
					 
				
					Assertion 
					tgbtwnexch    ⊢   φ   →   B  ∈  A  I  D        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							tkgeom.p  ⊢   P  =  Base  G      
						
							2 
								
							 
							tkgeom.d  ⊢   -  ˙ =   dist  ⁡  G        
						
							3 
								
							 
							tkgeom.i  ⊢   I  =    Itv   ⁡  G        
						
							4 
								
							 
							tkgeom.g   ⊢   φ   →   G  ∈  𝒢  Tarski        
						
							5 
								
							 
							tgbtwnintr.1   ⊢   φ   →   A  ∈  P         
						
							6 
								
							 
							tgbtwnintr.2   ⊢   φ   →   B  ∈  P         
						
							7 
								
							 
							tgbtwnintr.3   ⊢   φ   →   C  ∈  P         
						
							8 
								
							 
							tgbtwnintr.4   ⊢   φ   →   D  ∈  P         
						
							9 
								
							 
							tgbtwnexch.1   ⊢   φ   →   B  ∈  A  I  C        
						
							10 
								
							 
							tgbtwnexch.2   ⊢   φ   →   C  ∈  A  I  D        
						
							11 
								1  2  3  4  5  7  8  10 
							 
							tgbtwncom   ⊢   φ   →   C  ∈  D  I  A        
						
							12 
								1  2  3  4  5  6  7  9 
							 
							tgbtwncom   ⊢   φ   →   B  ∈  C  I  A        
						
							13 
								1  2  3  4  8  7  6  5  11  12 
							 
							tgbtwnexch2   ⊢   φ   →   B  ∈  D  I  A        
						
							14 
								1  2  3  4  8  6  5  13 
							 
							tgbtwncom   ⊢   φ   →   B  ∈  A  I  D