Metamath Proof Explorer
		
		
		
		Description:  Reflexivity law for line membership.  Part of theorem 6.17 of
       Schwabhauser p. 45.  (Contributed by Thierry Arnoux, 17-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | tglineelsb2.p |  | 
					
						|  |  | tglineelsb2.i |  | 
					
						|  |  | tglineelsb2.l |  | 
					
						|  |  | tglineelsb2.g |  | 
					
						|  |  | tglineelsb2.1 |  | 
					
						|  |  | tglineelsb2.2 |  | 
					
						|  |  | tglineelsb2.4 |  | 
				
					|  | Assertion | tglinerflx2 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineelsb2.p |  | 
						
							| 2 |  | tglineelsb2.i |  | 
						
							| 3 |  | tglineelsb2.l |  | 
						
							| 4 |  | tglineelsb2.g |  | 
						
							| 5 |  | tglineelsb2.1 |  | 
						
							| 6 |  | tglineelsb2.2 |  | 
						
							| 7 |  | tglineelsb2.4 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 1 8 2 4 5 6 | tgbtwntriv2 |  | 
						
							| 10 | 1 2 3 4 5 6 6 7 9 | btwnlng1 |  |