Metamath Proof Explorer


Theorem tglinethrueu

Description: There is a unique line going through any two distinct points. Theorem 6.19 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglineelsb2.1 φPB
tglineelsb2.2 φQB
tglineelsb2.4 φPQ
Assertion tglinethrueu φ∃!xranLPxQx

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglineelsb2.1 φPB
6 tglineelsb2.2 φQB
7 tglineelsb2.4 φPQ
8 1 2 3 4 5 6 7 tghilberti1 φxranLPxQx
9 1 2 3 4 5 6 7 tghilberti2 φ*xranLPxQx
10 reu5 ∃!xranLPxQxxranLPxQx*xranLPxQx
11 8 9 10 sylanbrc φ∃!xranLPxQx