Metamath Proof Explorer


Theorem tgrpgrp

Description: The translation group is a group. (Contributed by NM, 6-Jun-2013)

Ref Expression
Hypotheses tgrpgrp.h H=LHypK
tgrpgrp.g G=TGrpKW
Assertion tgrpgrp KHLWHGGrp

Proof

Step Hyp Ref Expression
1 tgrpgrp.h H=LHypK
2 tgrpgrp.g G=TGrpKW
3 eqid LTrnKW=LTrnKW
4 eqid +G=+G
5 eqid BaseK=BaseK
6 1 3 2 4 5 tgrpgrplem KHLWHGGrp