Metamath Proof Explorer


Theorem tgsss2

Description: Third congruence theorem: SSS. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p P=BaseG
tgsas.m -˙=distG
tgsas.i I=ItvG
tgsas.g φG𝒢Tarski
tgsas.a φAP
tgsas.b φBP
tgsas.c φCP
tgsas.d φDP
tgsas.e φEP
tgsas.f φFP
tgsss.1 φA-˙B=D-˙E
tgsss.2 φB-˙C=E-˙F
tgsss.3 φC-˙A=F-˙D
tgsss.4 φAB
tgsss.5 φBC
tgsss.6 φCA
Assertion tgsss2 φ⟨“CAB”⟩𝒢G⟨“FDE”⟩

Proof

Step Hyp Ref Expression
1 tgsas.p P=BaseG
2 tgsas.m -˙=distG
3 tgsas.i I=ItvG
4 tgsas.g φG𝒢Tarski
5 tgsas.a φAP
6 tgsas.b φBP
7 tgsas.c φCP
8 tgsas.d φDP
9 tgsas.e φEP
10 tgsas.f φFP
11 tgsss.1 φA-˙B=D-˙E
12 tgsss.2 φB-˙C=E-˙F
13 tgsss.3 φC-˙A=F-˙D
14 tgsss.4 φAB
15 tgsss.5 φBC
16 tgsss.6 φCA
17 1 2 3 4 7 5 6 10 8 9 13 11 12 16 14 15 tgsss1 φ⟨“CAB”⟩𝒢G⟨“FDE”⟩