Metamath Proof Explorer


Theorem tgtop

Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion tgtop JToptopGenJ=J

Proof

Step Hyp Ref Expression
1 eltg3 JTopxtopGenJyyJx=y
2 simpr JTopyJx=yx=y
3 uniopn JTopyJyJ
4 3 adantr JTopyJx=yyJ
5 2 4 eqeltrd JTopyJx=yxJ
6 5 expl JTopyJx=yxJ
7 6 exlimdv JTopyyJx=yxJ
8 1 7 sylbid JTopxtopGenJxJ
9 8 ssrdv JToptopGenJJ
10 bastg JTopJtopGenJ
11 9 10 eqssd JToptopGenJ=J