Metamath Proof Explorer


Theorem thloc

Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K=toHLW
thloc.c ˙=ocvW
Assertion thloc ˙=ocK

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thloc.c ˙=ocvW
3 fvex toIncClSubSpWV
4 2 fvexi ˙V
5 ocid oc=Slotocndx
6 5 setsid toIncClSubSpWV˙V˙=octoIncClSubSpWsSetocndx˙
7 3 4 6 mp2an ˙=octoIncClSubSpWsSetocndx˙
8 eqid ClSubSpW=ClSubSpW
9 eqid toIncClSubSpW=toIncClSubSpW
10 1 8 9 2 thlval WVK=toIncClSubSpWsSetocndx˙
11 10 fveq2d WVocK=octoIncClSubSpWsSetocndx˙
12 7 11 eqtr4id WV˙=ocK
13 5 str0 =oc
14 fvprc ¬WVocvW=
15 2 14 eqtrid ¬WV˙=
16 fvprc ¬WVtoHLW=
17 1 16 eqtrid ¬WVK=
18 17 fveq2d ¬WVocK=oc
19 13 15 18 3eqtr4a ¬WV˙=ocK
20 12 19 pm2.61i ˙=ocK