Metamath Proof Explorer


Theorem tmdlactcn

Description: The left group action of element A in a topological monoid G is a continuous function. (Contributed by FL, 18-Mar-2008) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgplacthmeo.1 F=xXA+˙x
tgplacthmeo.2 X=BaseG
tgplacthmeo.3 +˙=+G
tgplacthmeo.4 J=TopOpenG
Assertion tmdlactcn GTopMndAXFJCnJ

Proof

Step Hyp Ref Expression
1 tgplacthmeo.1 F=xXA+˙x
2 tgplacthmeo.2 X=BaseG
3 tgplacthmeo.3 +˙=+G
4 tgplacthmeo.4 J=TopOpenG
5 simpl GTopMndAXGTopMnd
6 4 2 tmdtopon GTopMndJTopOnX
7 6 adantr GTopMndAXJTopOnX
8 simpr GTopMndAXAX
9 7 7 8 cnmptc GTopMndAXxXAJCnJ
10 7 cnmptid GTopMndAXxXxJCnJ
11 4 3 5 7 9 10 cnmpt1plusg GTopMndAXxXA+˙xJCnJ
12 1 11 eqeltrid GTopMndAXFJCnJ