Metamath Proof Explorer


Theorem tngplusg

Description: The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngplusg.2 +˙=+G
Assertion tngplusg NV+˙=+T

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngplusg.2 +˙=+G
3 plusgid +𝑔=Slot+ndx
4 tsetndxnplusgndx TopSetndx+ndx
5 4 necomi +ndxTopSetndx
6 dsndxnplusgndx distndx+ndx
7 6 necomi +ndxdistndx
8 1 3 5 7 tnglem NV+G=+T
9 2 8 eqtrid NV+˙=+T