Metamath Proof Explorer


Theorem topnval

Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses topnval.1 B=BaseW
topnval.2 J=TopSetW
Assertion topnval J𝑡B=TopOpenW

Proof

Step Hyp Ref Expression
1 topnval.1 B=BaseW
2 topnval.2 J=TopSetW
3 fveq2 w=WTopSetw=TopSetW
4 3 2 eqtr4di w=WTopSetw=J
5 fveq2 w=WBasew=BaseW
6 5 1 eqtr4di w=WBasew=B
7 4 6 oveq12d w=WTopSetw𝑡Basew=J𝑡B
8 df-topn TopOpen=wVTopSetw𝑡Basew
9 ovex J𝑡BV
10 7 8 9 fvmpt WVTopOpenW=J𝑡B
11 10 eqcomd WVJ𝑡B=TopOpenW
12 0rest 𝑡B=
13 fvprc ¬WVTopSetW=
14 2 13 eqtrid ¬WVJ=
15 14 oveq1d ¬WVJ𝑡B=𝑡B
16 fvprc ¬WVTopOpenW=
17 12 15 16 3eqtr4a ¬WVJ𝑡B=TopOpenW
18 11 17 pm2.61i J𝑡B=TopOpenW