Metamath Proof Explorer


Theorem toponcom

Description: If K is a topology on the base set of topology J , then J is a topology on the base of K . (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion toponcom JTopKTopOnJJTopOnK

Proof

Step Hyp Ref Expression
1 toponuni KTopOnJJ=K
2 1 eqcomd KTopOnJK=J
3 2 anim2i JTopKTopOnJJTopK=J
4 istopon JTopOnKJTopK=J
5 3 4 sylibr JTopKTopOnJJTopOnK