Metamath Proof Explorer
Description: A subset is open in the topology it generates via restriction.
(Contributed by Glauco Siliprandi, 21-Dec-2024)
|
|
Ref |
Expression |
|
Hypotheses |
toprestsubel.1 |
|
|
|
toprestsubel.2 |
|
|
Assertion |
toprestsubel |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toprestsubel.1 |
|
| 2 |
|
toprestsubel.2 |
|
| 3 |
|
eqid |
|
| 4 |
3
|
topopn |
|
| 5 |
1 4
|
syl |
|
| 6 |
1 5 2
|
restsubel |
|