Metamath Proof Explorer


Theorem toprestsubel

Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses toprestsubel.1 φJTop
toprestsubel.2 φAJ
Assertion toprestsubel φAJ𝑡A

Proof

Step Hyp Ref Expression
1 toprestsubel.1 φJTop
2 toprestsubel.2 φAJ
3 eqid J=J
4 3 topopn JTopJJ
5 1 4 syl φJJ
6 1 5 2 restsubel φAJ𝑡A