Metamath Proof Explorer


Theorem tposco

Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tposco tposFG=FtposG

Proof

Step Hyp Ref Expression
1 coass FGxV×Vx-1=FGxV×Vx-1
2 dftpos4 tposFG=FGxV×Vx-1
3 dftpos4 tposG=GxV×Vx-1
4 3 coeq2i FtposG=FGxV×Vx-1
5 1 2 4 3eqtr4i tposFG=FtposG