Metamath Proof Explorer


Theorem tposeq

Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposeq F=GtposF=tposG

Proof

Step Hyp Ref Expression
1 eqimss F=GFG
2 tposss FGtposFtposG
3 1 2 syl F=GtposFtposG
4 eqimss2 F=GGF
5 tposss GFtposGtposF
6 4 5 syl F=GtposGtposF
7 3 6 eqssd F=GtposF=tposG