Metamath Proof Explorer


Theorem tposf2

Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposf2 RelAF:ABtposF:A-1B

Proof

Step Hyp Ref Expression
1 tposfo2 RelAF:AontoranFtposF:A-1ontoranF
2 ffn F:ABFFnA
3 dffn4 FFnAF:AontoranF
4 2 3 sylib F:ABF:AontoranF
5 1 4 impel RelAF:ABtposF:A-1ontoranF
6 fof tposF:A-1ontoranFtposF:A-1ranF
7 5 6 syl RelAF:ABtposF:A-1ranF
8 frn F:ABranFB
9 8 adantl RelAF:ABranFB
10 7 9 fssd RelAF:ABtposF:A-1B
11 10 ex RelAF:ABtposF:A-1B