Metamath Proof Explorer


Theorem tposfn

Description: Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tposfn FFnA×BtposFFnB×A

Proof

Step Hyp Ref Expression
1 tposf F:A×BVtposF:B×AV
2 dffn2 FFnA×BF:A×BV
3 dffn2 tposFFnB×AtposF:B×AV
4 1 2 3 3imtr4i FFnA×BtposFFnB×A