Metamath Proof Explorer


Theorem tposresxp

Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposresxp tpos F A × B = tpos F B × A

Proof

Step Hyp Ref Expression
1 relxp Rel A × B
2 tposres Rel A × B tpos F A × B = tpos F A × B -1
3 1 2 ax-mp tpos F A × B = tpos F A × B -1
4 cnvxp A × B -1 = B × A
5 4 reseq2i F A × B -1 = F B × A
6 5 tposeqi tpos F A × B -1 = tpos F B × A
7 3 6 eqtri tpos F A × B = tpos F B × A