Metamath Proof Explorer


Theorem tpssbd

Description: If an ordered triple is a subset of a class, the second element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssbd.1 φ B V
tpssbd.2 φ A B C D
Assertion tpssbd φ B D

Proof

Step Hyp Ref Expression
1 tpssbd.1 φ B V
2 tpssbd.2 φ A B C D
3 tprot A B C = B C A
4 3 2 eqsstrrid φ B C A D
5 1 4 tpssad φ B D