Metamath Proof Explorer


Theorem tpsscd

Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpsscd.1 φ C V
tpsscd.2 φ A B C D
Assertion tpsscd φ C D

Proof

Step Hyp Ref Expression
1 tpsscd.1 φ C V
2 tpsscd.2 φ A B C D
3 tprot A B C = B C A
4 tprot B C A = C A B
5 3 4 eqtri A B C = C A B
6 5 2 eqsstrrid φ C A B D
7 1 6 tpssad φ C D