Metamath Proof Explorer


Theorem trcleq2lem

Description: Equality implies bijection. (Contributed by RP, 5-May-2020)

Ref Expression
Assertion trcleq2lem A=BRAAAARBBBB

Proof

Step Hyp Ref Expression
1 sseq2 A=BRARB
2 id A=BA=B
3 2 2 coeq12d A=BAA=BB
4 3 2 sseq12d A=BAAABBB
5 1 4 anbi12d A=BRAAAARBBBB