Metamath Proof Explorer


Theorem triin

Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022)

Ref Expression
Assertion triin xATrBTrxAB

Proof

Step Hyp Ref Expression
1 eliin yVyxABxAyB
2 1 elv yxABxAyB
3 r19.26 xATrByBxATrBxAyB
4 trss TrByByB
5 4 imp TrByByB
6 5 ralimi xATrByBxAyB
7 3 6 sylbir xATrBxAyBxAyB
8 ssiin yxABxAyB
9 7 8 sylibr xATrBxAyByxAB
10 2 9 sylan2b xATrByxAByxAB
11 10 ralrimiva xATrByxAByxAB
12 dftr3 TrxAByxAByxAB
13 11 12 sylibr xATrBTrxAB