Metamath Proof Explorer


Theorem trkgstr

Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w W=BasendxUdistndxDItvndxI
Assertion trkgstr WStruct116

Proof

Step Hyp Ref Expression
1 trkgstr.w W=BasendxUdistndxDItvndxI
2 1nn 1
3 basendx Basendx=1
4 2nn0 20
5 1nn0 10
6 1lt10 1<10
7 2 4 5 6 declti 1<12
8 2nn 2
9 5 8 decnncl 12
10 dsndx distndx=12
11 6nn 6
12 2lt6 2<6
13 5 4 11 12 declt 12<16
14 5 11 decnncl 16
15 itvndx Itvndx=16
16 2 3 7 9 10 13 14 15 strle3 BasendxUdistndxDItvndxIStruct116
17 1 16 eqbrtri WStruct116