Metamath Proof Explorer


Theorem trlnidat

Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in Crawley p. 112. (Contributed by NM, 23-May-2012)

Ref Expression
Hypotheses trlnidat.b B=BaseK
trlnidat.a A=AtomsK
trlnidat.h H=LHypK
trlnidat.t T=LTrnKW
trlnidat.r R=trLKW
Assertion trlnidat KHLWHFTFIBRFA

Proof

Step Hyp Ref Expression
1 trlnidat.b B=BaseK
2 trlnidat.a A=AtomsK
3 trlnidat.h H=LHypK
4 trlnidat.t T=LTrnKW
5 trlnidat.r R=trLKW
6 eqid K=K
7 1 6 2 3 4 ltrnnid KHLWHFTFIBpA¬pKWFpp
8 simp11 KHLWHFTFIBpA¬pKWFppKHLWH
9 simp2 KHLWHFTFIBpA¬pKWFpppA
10 simp3l KHLWHFTFIBpA¬pKWFpp¬pKW
11 simp12 KHLWHFTFIBpA¬pKWFppFT
12 simp3r KHLWHFTFIBpA¬pKWFppFpp
13 6 2 3 4 5 trlat KHLWHpA¬pKWFTFppRFA
14 8 9 10 11 12 13 syl122anc KHLWHFTFIBpA¬pKWFppRFA
15 14 rexlimdv3a KHLWHFTFIBpA¬pKWFppRFA
16 7 15 mpd KHLWHFTFIBRFA