Metamath Proof Explorer


Theorem trressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive, see also trrelressn . (Contributed by Peter Mazsa, 16-Jun-2024)

Ref Expression
Assertion trressn xyzxRAyyRAzxRAz

Proof

Step Hyp Ref Expression
1 an3 x=AARyy=AARzx=AARz
2 eqbrb x=AxRyx=AARy
3 eqbrb y=AyRzy=AARz
4 2 3 anbi12i x=AxRyy=AyRzx=AARyy=AARz
5 eqbrb x=AxRzx=AARz
6 1 4 5 3imtr4i x=AxRyy=AyRzx=AxRz
7 brressn xVyVxRAyx=AxRy
8 7 el2v xRAyx=AxRy
9 brressn yVzVyRAzy=AyRz
10 9 el2v yRAzy=AyRz
11 8 10 anbi12i xRAyyRAzx=AxRyy=AyRz
12 brressn xVzVxRAzx=AxRz
13 12 el2v xRAzx=AxRz
14 6 11 13 3imtr4i xRAyyRAzxRAz
15 14 gen2 yzxRAyyRAzxRAz
16 15 ax-gen xyzxRAyyRAzxRAz