Metamath Proof Explorer


Theorem trsspwALT

Description: Virtual deduction proof of the left-to-right implication of dftr4 . A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion trsspwALT Tr A A 𝒫 A

Proof

Step Hyp Ref Expression
1 dfss2 A 𝒫 A x x A x 𝒫 A
2 idn1 Tr A Tr A
3 idn2 Tr A , x A x A
4 trss Tr A x A x A
5 2 3 4 e12 Tr A , x A x A
6 vex x V
7 6 elpw x 𝒫 A x A
8 5 7 e2bir Tr A , x A x 𝒫 A
9 8 in2 Tr A x A x 𝒫 A
10 9 gen11 Tr A x x A x 𝒫 A
11 biimpr A 𝒫 A x x A x 𝒫 A x x A x 𝒫 A A 𝒫 A
12 1 10 11 e01 Tr A A 𝒫 A
13 12 in1 Tr A A 𝒫 A