| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss | ⊢ ( 𝐴  ⊆  𝒫  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 2 |  | idn1 | ⊢ (    Tr  𝐴    ▶    Tr  𝐴    ) | 
						
							| 3 |  | idn2 | ⊢ (    Tr  𝐴    ,    𝑥  ∈  𝐴    ▶    𝑥  ∈  𝐴    ) | 
						
							| 4 |  | trss | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 5 | 2 3 4 | e12 | ⊢ (    Tr  𝐴    ,    𝑥  ∈  𝐴    ▶    𝑥  ⊆  𝐴    ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | elpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 8 | 5 7 | e2bir | ⊢ (    Tr  𝐴    ,    𝑥  ∈  𝐴    ▶    𝑥  ∈  𝒫  𝐴    ) | 
						
							| 9 | 8 | in2 | ⊢ (    Tr  𝐴    ▶    ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 )    ) | 
						
							| 10 | 9 | gen11 | ⊢ (    Tr  𝐴    ▶    ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 )    ) | 
						
							| 11 |  | biimpr | ⊢ ( ( 𝐴  ⊆  𝒫  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 )  →  𝐴  ⊆  𝒫  𝐴 ) ) | 
						
							| 12 | 1 10 11 | e01 | ⊢ (    Tr  𝐴    ▶    𝐴  ⊆  𝒫  𝐴    ) | 
						
							| 13 | 12 | in1 | ⊢ ( Tr  𝐴  →  𝐴  ⊆  𝒫  𝐴 ) |