Metamath Proof Explorer


Theorem trsspwALT

Description: Virtual deduction proof of the left-to-right implication of dftr4 . A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion trsspwALT ( Tr 𝐴𝐴 ⊆ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴 ⊆ 𝒫 𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 ) )
2 idn1 (    Tr 𝐴    ▶    Tr 𝐴    )
3 idn2 (    Tr 𝐴    ,    𝑥𝐴    ▶    𝑥𝐴    )
4 trss ( Tr 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
5 2 3 4 e12 (    Tr 𝐴    ,    𝑥𝐴    ▶    𝑥𝐴    )
6 vex 𝑥 ∈ V
7 6 elpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
8 5 7 e2bir (    Tr 𝐴    ,    𝑥𝐴    ▶    𝑥 ∈ 𝒫 𝐴    )
9 8 in2 (    Tr 𝐴    ▶    ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 )    )
10 9 gen11 (    Tr 𝐴    ▶   𝑥 ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 )    )
11 biimpr ( ( 𝐴 ⊆ 𝒫 𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 ) ) → ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 ) → 𝐴 ⊆ 𝒫 𝐴 ) )
12 1 10 11 e01 (    Tr 𝐴    ▶    𝐴 ⊆ 𝒫 𝐴    )
13 12 in1 ( Tr 𝐴𝐴 ⊆ 𝒫 𝐴 )