| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss | ⊢ ( 𝐴  ⊆  𝒫  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 2 |  | id | ⊢ ( Tr  𝐴  →  Tr  𝐴 ) | 
						
							| 3 |  | idd | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 4 |  | trss | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 5 | 2 3 4 | sylsyld | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ⊆  𝐴 ) ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | elpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 8 | 5 7 | imbitrrdi | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 9 | 8 | idiALT | ⊢ ( Tr  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 10 | 9 | alrimiv | ⊢ ( Tr  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 11 |  | biimpr | ⊢ ( ( 𝐴  ⊆  𝒫  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 )  →  𝐴  ⊆  𝒫  𝐴 ) ) | 
						
							| 12 | 1 10 11 | mpsyl | ⊢ ( Tr  𝐴  →  𝐴  ⊆  𝒫  𝐴 ) | 
						
							| 13 | 12 | idiALT | ⊢ ( Tr  𝐴  →  𝐴  ⊆  𝒫  𝐴 ) |