Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
2 |
|
id |
⊢ ( Tr 𝐴 → Tr 𝐴 ) |
3 |
|
idd |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
4 |
|
trss |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
5 |
2 3 4
|
sylsyld |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6
|
elpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
8 |
5 7
|
syl6ibr |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
9 |
8
|
idiALT |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
10 |
9
|
alrimiv |
⊢ ( Tr 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
11 |
|
biimpr |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) → 𝐴 ⊆ 𝒫 𝐴 ) ) |
12 |
1 10 11
|
mpsyl |
⊢ ( Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴 ) |
13 |
12
|
idiALT |
⊢ ( Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴 ) |