| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss |  |-  ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) | 
						
							| 2 |  | id |  |-  ( Tr A -> Tr A ) | 
						
							| 3 |  | idd |  |-  ( Tr A -> ( x e. A -> x e. A ) ) | 
						
							| 4 |  | trss |  |-  ( Tr A -> ( x e. A -> x C_ A ) ) | 
						
							| 5 | 2 3 4 | sylsyld |  |-  ( Tr A -> ( x e. A -> x C_ A ) ) | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 | elpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 8 | 5 7 | imbitrrdi |  |-  ( Tr A -> ( x e. A -> x e. ~P A ) ) | 
						
							| 9 | 8 | idiALT |  |-  ( Tr A -> ( x e. A -> x e. ~P A ) ) | 
						
							| 10 | 9 | alrimiv |  |-  ( Tr A -> A. x ( x e. A -> x e. ~P A ) ) | 
						
							| 11 |  | biimpr |  |-  ( ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) -> ( A. x ( x e. A -> x e. ~P A ) -> A C_ ~P A ) ) | 
						
							| 12 | 1 10 11 | mpsyl |  |-  ( Tr A -> A C_ ~P A ) | 
						
							| 13 | 12 | idiALT |  |-  ( Tr A -> A C_ ~P A ) |