Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
|- ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) |
2 |
|
id |
|- ( Tr A -> Tr A ) |
3 |
|
idd |
|- ( Tr A -> ( x e. A -> x e. A ) ) |
4 |
|
trss |
|- ( Tr A -> ( x e. A -> x C_ A ) ) |
5 |
2 3 4
|
sylsyld |
|- ( Tr A -> ( x e. A -> x C_ A ) ) |
6 |
|
vex |
|- x e. _V |
7 |
6
|
elpw |
|- ( x e. ~P A <-> x C_ A ) |
8 |
5 7
|
syl6ibr |
|- ( Tr A -> ( x e. A -> x e. ~P A ) ) |
9 |
8
|
idiALT |
|- ( Tr A -> ( x e. A -> x e. ~P A ) ) |
10 |
9
|
alrimiv |
|- ( Tr A -> A. x ( x e. A -> x e. ~P A ) ) |
11 |
|
biimpr |
|- ( ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) -> ( A. x ( x e. A -> x e. ~P A ) -> A C_ ~P A ) ) |
12 |
1 10 11
|
mpsyl |
|- ( Tr A -> A C_ ~P A ) |
13 |
12
|
idiALT |
|- ( Tr A -> A C_ ~P A ) |