Metamath Proof Explorer


Theorem trsspwALT

Description: Virtual deduction proof of the left-to-right implication of dftr4 . A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion trsspwALT
|- ( Tr A -> A C_ ~P A )

Proof

Step Hyp Ref Expression
1 dfss2
 |-  ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) )
2 idn1
 |-  (. Tr A ->. Tr A ).
3 idn2
 |-  (. Tr A ,. x e. A ->. x e. A ).
4 trss
 |-  ( Tr A -> ( x e. A -> x C_ A ) )
5 2 3 4 e12
 |-  (. Tr A ,. x e. A ->. x C_ A ).
6 vex
 |-  x e. _V
7 6 elpw
 |-  ( x e. ~P A <-> x C_ A )
8 5 7 e2bir
 |-  (. Tr A ,. x e. A ->. x e. ~P A ).
9 8 in2
 |-  (. Tr A ->. ( x e. A -> x e. ~P A ) ).
10 9 gen11
 |-  (. Tr A ->. A. x ( x e. A -> x e. ~P A ) ).
11 biimpr
 |-  ( ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) -> ( A. x ( x e. A -> x e. ~P A ) -> A C_ ~P A ) )
12 1 10 11 e01
 |-  (. Tr A ->. A C_ ~P A ).
13 12 in1
 |-  ( Tr A -> A C_ ~P A )