| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss |  |-  ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) | 
						
							| 2 |  | idn1 |  |-  (. Tr A ->. Tr A ). | 
						
							| 3 |  | idn2 |  |-  (. Tr A ,. x e. A ->. x e. A ). | 
						
							| 4 |  | trss |  |-  ( Tr A -> ( x e. A -> x C_ A ) ) | 
						
							| 5 | 2 3 4 | e12 |  |-  (. Tr A ,. x e. A ->. x C_ A ). | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 | elpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 8 | 5 7 | e2bir |  |-  (. Tr A ,. x e. A ->. x e. ~P A ). | 
						
							| 9 | 8 | in2 |  |-  (. Tr A ->. ( x e. A -> x e. ~P A ) ). | 
						
							| 10 | 9 | gen11 |  |-  (. Tr A ->. A. x ( x e. A -> x e. ~P A ) ). | 
						
							| 11 |  | biimpr |  |-  ( ( A C_ ~P A <-> A. x ( x e. A -> x e. ~P A ) ) -> ( A. x ( x e. A -> x e. ~P A ) -> A C_ ~P A ) ) | 
						
							| 12 | 1 10 11 | e01 |  |-  (. Tr A ->. A C_ ~P A ). | 
						
							| 13 | 12 | in1 |  |-  ( Tr A -> A C_ ~P A ) |