Metamath Proof Explorer


Theorem ttgbasOLD

Description: Obsolete proof of ttgbas as of 29-Oct-2024. The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgbas.1 ⊒B=BaseH
Assertion ttgbasOLD ⊒B=BaseG

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgbas.1 ⊒B=BaseH
3 df-base ⊒Base=Slot1
4 1nn ⊒1βˆˆβ„•
5 6nn0 ⊒6βˆˆβ„•0
6 1nn0 ⊒1βˆˆβ„•0
7 1lt10 ⊒1<10
8 4 5 6 7 declti ⊒1<16
9 1 3 4 8 ttglemOLD ⊒BaseH=BaseG
10 2 9 eqtri ⊒B=BaseG