Metamath Proof Explorer


Theorem ttgdsOLD

Description: Obsolete proof of ttgds as of 29-Oct-2024. The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgds.1 ⊒D=dist⁑H
Assertion ttgdsOLD ⊒D=dist⁑G

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgds.1 ⊒D=dist⁑H
3 df-ds ⊒dist=Slot12
4 1nn0 ⊒1βˆˆβ„•0
5 2nn ⊒2βˆˆβ„•
6 4 5 decnncl ⊒12βˆˆβ„•
7 2nn0 ⊒2βˆˆβ„•0
8 6nn ⊒6βˆˆβ„•
9 2lt6 ⊒2<6
10 4 7 8 9 declt ⊒12<16
11 1 3 6 10 ttglemOLD ⊒dist⁑H=dist⁑G
12 2 11 eqtri ⊒D=dist⁑G