Metamath Proof Explorer


Theorem ttgitvval

Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgitvval.i ⊒I=Itv⁑G
ttgitvval.b ⊒P=BaseH
ttgitvval.m ⊒-Λ™=-H
ttgitvval.s βŠ’Β·Λ™=β‹…H
Assertion ttgitvval ⊒H∈V∧X∈P∧Y∈Pβ†’XIY=z∈P|βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgitvval.i ⊒I=Itv⁑G
3 ttgitvval.b ⊒P=BaseH
4 ttgitvval.m ⊒-Λ™=-H
5 ttgitvval.s βŠ’Β·Λ™=β‹…H
6 1 3 4 5 2 ttgval ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈P,y∈P⟼z∈P|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈P,y∈P⟼z∈P|z∈xIy∨x∈zIy∨y∈xIz∧I=x∈P,y∈P⟼z∈P|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
7 6 simprd ⊒H∈Vβ†’I=x∈P,y∈P⟼z∈P|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
8 7 3ad2ant1 ⊒H∈V∧X∈P∧Y∈Pβ†’I=x∈P,y∈P⟼z∈P|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
9 simprl ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’x=X
10 9 oveq2d ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’z-Λ™x=z-Λ™X
11 simprr ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’y=Y
12 11 9 oveq12d ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’y-Λ™x=Y-Λ™X
13 12 oveq2d ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’kΒ·Λ™y-Λ™x=kΒ·Λ™Y-Λ™X
14 10 13 eqeq12d ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’z-Λ™x=kΒ·Λ™y-Λ™x↔z-Λ™X=kΒ·Λ™Y-Λ™X
15 14 rexbidv ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†”βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X
16 15 rabbidv ⊒H∈V∧X∈P∧Y∈P∧x=X∧y=Yβ†’z∈P|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=z∈P|βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X
17 simp2 ⊒H∈V∧X∈P∧Y∈Pβ†’X∈P
18 simp3 ⊒H∈V∧X∈P∧Y∈Pβ†’Y∈P
19 3 fvexi ⊒P∈V
20 19 rabex ⊒z∈P|βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X∈V
21 20 a1i ⊒H∈V∧X∈P∧Y∈Pβ†’z∈P|βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X∈V
22 8 16 17 18 21 ovmpod ⊒H∈V∧X∈P∧Y∈Pβ†’XIY=z∈P|βˆƒk∈01z-Λ™X=kΒ·Λ™Y-Λ™X