| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttgitvval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ttgitvval.b | ⊢ 𝑃  =  ( Base ‘ 𝐻 ) | 
						
							| 4 |  | ttgitvval.m | ⊢  −   =  ( -g ‘ 𝐻 ) | 
						
							| 5 |  | ttgitvval.s | ⊢  ·   =  (  ·𝑠  ‘ 𝐻 ) | 
						
							| 6 | 1 3 4 5 2 | ttgval | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  ∧  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑥  =  𝑋 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑧  −  𝑥 )  =  ( 𝑧  −  𝑋 ) ) | 
						
							| 11 |  | simprr | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑦  =  𝑌 ) | 
						
							| 12 | 11 9 | oveq12d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑦  −  𝑥 )  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) ) | 
						
							| 14 | 10 13 | eqeq12d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) ) ) | 
						
							| 16 | 15 | rabbidv | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  =  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) } ) | 
						
							| 17 |  | simp2 | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝑋  ∈  𝑃 ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝑌  ∈  𝑃 ) | 
						
							| 19 | 3 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 20 | 19 | rabex | ⊢ { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) }  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) }  ∈  V ) | 
						
							| 22 | 8 16 17 18 21 | ovmpod | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋 𝐼 𝑌 )  =  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) } ) |