Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
⊢ 𝐺 = ( toTG ‘ 𝐻 ) |
2 |
|
ttgitvval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ttgitvval.b |
⊢ 𝑃 = ( Base ‘ 𝐻 ) |
4 |
|
ttgitvval.m |
⊢ − = ( -g ‘ 𝐻 ) |
5 |
|
ttgitvval.s |
⊢ · = ( ·𝑠 ‘ 𝐻 ) |
6 |
1 3 4 5 2
|
ttgval |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑃 ↦ { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑃 ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) ∧ 𝐼 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑃 ↦ { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝐻 ∈ 𝑉 → 𝐼 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑃 ↦ { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝐼 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑃 ↦ { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
10 |
9
|
oveq2d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑧 − 𝑥 ) = ( 𝑧 − 𝑋 ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
12 |
11 9
|
oveq12d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 − 𝑥 ) = ( 𝑌 − 𝑋 ) ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑘 · ( 𝑦 − 𝑥 ) ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) ) |
14 |
10 13
|
eqeq12d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ↔ ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) ) ) |
15 |
14
|
rexbidv |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) ) ) |
16 |
15
|
rabbidv |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } = { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) } ) |
17 |
|
simp2 |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝑋 ∈ 𝑃 ) |
18 |
|
simp3 |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝑌 ∈ 𝑃 ) |
19 |
3
|
fvexi |
⊢ 𝑃 ∈ V |
20 |
19
|
rabex |
⊢ { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) } ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) } ∈ V ) |
22 |
8 16 17 18 21
|
ovmpod |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( 𝑋 𝐼 𝑌 ) = { 𝑧 ∈ 𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑋 ) = ( 𝑘 · ( 𝑌 − 𝑋 ) ) } ) |