Metamath Proof Explorer


Theorem ttgitvval

Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)

Ref Expression
Hypotheses ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
ttgitvval.i 𝐼 = ( Itv ‘ 𝐺 )
ttgitvval.b 𝑃 = ( Base ‘ 𝐻 )
ttgitvval.m = ( -g𝐻 )
ttgitvval.s · = ( ·𝑠𝐻 )
Assertion ttgitvval ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → ( 𝑋 𝐼 𝑌 ) = { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) } )

Proof

Step Hyp Ref Expression
1 ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
2 ttgitvval.i 𝐼 = ( Itv ‘ 𝐺 )
3 ttgitvval.b 𝑃 = ( Base ‘ 𝐻 )
4 ttgitvval.m = ( -g𝐻 )
5 ttgitvval.s · = ( ·𝑠𝐻 )
6 1 3 4 5 2 ttgval ( 𝐻𝑉 → ( 𝐺 = ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥𝑃 , 𝑦𝑃 ↦ { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥𝑃 , 𝑦𝑃 ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ⟩ ) ∧ 𝐼 = ( 𝑥𝑃 , 𝑦𝑃 ↦ { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) } ) ) )
7 6 simprd ( 𝐻𝑉𝐼 = ( 𝑥𝑃 , 𝑦𝑃 ↦ { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) } ) )
8 7 3ad2ant1 ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → 𝐼 = ( 𝑥𝑃 , 𝑦𝑃 ↦ { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) } ) )
9 simprl ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 )
10 9 oveq2d ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑧 𝑥 ) = ( 𝑧 𝑋 ) )
11 simprr ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 )
12 11 9 oveq12d ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑦 𝑥 ) = ( 𝑌 𝑋 ) )
13 12 oveq2d ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑘 · ( 𝑦 𝑥 ) ) = ( 𝑘 · ( 𝑌 𝑋 ) ) )
14 10 13 eqeq12d ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) ↔ ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) ) )
15 14 rexbidv ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) ) )
16 15 rabbidv ( ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑥 ) = ( 𝑘 · ( 𝑦 𝑥 ) ) } = { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) } )
17 simp2 ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → 𝑋𝑃 )
18 simp3 ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → 𝑌𝑃 )
19 3 fvexi 𝑃 ∈ V
20 19 rabex { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) } ∈ V
21 20 a1i ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) } ∈ V )
22 8 16 17 18 21 ovmpod ( ( 𝐻𝑉𝑋𝑃𝑌𝑃 ) → ( 𝑋 𝐼 𝑌 ) = { 𝑧𝑃 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 𝑋 ) = ( 𝑘 · ( 𝑌 𝑋 ) ) } )