Metamath Proof Explorer


Theorem tustopn

Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypotheses tuslem.k K = toUnifSp U
tustopn.j J = unifTop U
Assertion tustopn U UnifOn X J = TopOpen K

Proof

Step Hyp Ref Expression
1 tuslem.k K = toUnifSp U
2 tustopn.j J = unifTop U
3 1 tuslem U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K
4 3 simp3d U UnifOn X unifTop U = TopOpen K
5 2 4 eqtrid U UnifOn X J = TopOpen K